by Lifeboat Foundation Scientific Advisory Board member Michael Anissimov.
Transhumanists advocate the improvement of human capacities through advanced technology. Not just technology as in gadgets you get from Best Buy, but technology in the grander sense of strategies for eliminating disease, providing cheap but high-quality products to the world’s poorest, improving quality of life and social interconnectedness, and so on. Technology we don’t notice because it’s blended in with the fabric of the world, but would immediately take note of its absence if it became unavailable. (Ever tried to travel to another country on foot?) Technology needn’t be expensive — indeed, if a technology is truly effective it will pay for itself many times over.
Transhumanists tend to take a longer-than-average view of technological progress, looking not just five or ten years into the future but twenty years, thirty years, and beyond. We realize that the longer you look forward, the more uncertain the predictions get, but one thing is quite certain: if a technology is physically possible and obviously useful, human (or transhuman!) ingenuity will see to it that it gets built eventually.
As we gain ever greater control over the atomic structure of matter, our technological goals become increasingly ambitious, and their payoffs more and more generous. Sometimes new technologies even make us happier in a long-lasting way: the Internet would be a prime example. In the following list I take a look at what I consider the top ten transhumanist technologies.
Cryonics is the high-fidelity preservation of the human body, and particularly the brain, after what we would call death, in anticipation of possible future revival. Cryonics is an important transhumanist technology not only because it is already available today, but because the technology is relatively mature — we can reliably stop cells from decaying. In vitrification, the brain is not frozen in the conventional manner but with a cryoprotectant (antifreeze) mixture, which effectively prevents the formation of crystals, causing the water to freeze smoothly, like glass.
Maintenance of a cryo-patient is not difficult — it requires no electricity, but merely the replenishment of liquid nitrogen about every three weeks. As cryonics becomes more popular, this process could become automated and extremely reliable. Further improvements in dewar technology will continue to increase safety and reduce costs. The Cryonics Institute in Michigan, for example, has operated since 1976 without a single mishap.
Financed by the interest of the payout of a life insurance policy (which for people under 40 may cost as little as $100 a year to own), patients can be securely cryopreserved for as long as the cryonics company stays afloat and the dewar stays in one piece. Eventual revival does not require the technology to become available tomorrow, or next year… as long as the liquid nitrogen keeps replenished, you can stay on ice for as long as it takes.
For an existence proof of cryonic revival, there are frogs that can freeze solid and revive later, though reviving a human from freezing would likely require molecular nanotechnology (MNT). When we will be able to revive a cryo-patient will be strongly related to when we develop sophisticated MNT. Once we do develop MNT, the prospect of successful revival is extremely likely — it would involve slowly melting the ice and rebooting the metabolism by kickstarting the appropriate chemical reactions within cells.
The above image may look like a photo, but it’s actually a screenshot from the game Crysis, a first-person shooter which will be released later this year. Look at screenshots from the game and you’ll see that computer graphics are already beginning to approach photorealism. Sometime in the 2020s, reality simulations will become so high-resolution and immersive that they’ll start to get indistinguishable from the real thing.
Simulations will become the preferred environments for work and play. Pretty soon the main obstacle to truly immersive VR will not be the visuals but the haptics — our sense of touch. To fool our senses into believing haptic technologies are conveying the real thing, the “frame rate” needs to be significantly higher than for visual technologies, a few hundred updates per second rather than a few dozen — which is why development could take another decade or two. But many millions of dollars are currently going into efforts to develop advanced VR.
Clearly, World of Warcraft’s eight million subscribers and Second Life’s five million subscribers are onto something. At least 1% of all broadband Internet users play in virtual worlds, and this number is increasing rapidly. These worlds typically outclass the real world in terms of customizability, but still have yet to catch up in terms of sensory richness or social fulfillment. But it’s only a matter of time.
In the mid-to-late 2020s, I expect full-body, high quality haptic VR suits to be affordable to the average person in developed countries, obtained either from your local Wal-Mart or perhaps printed right out of a desktop nanofactory after payment of a fee. For more on this, here is one scientific paper, “Towards full-body haptic feedback”.
Gene therapy replaces bad genes with good genes, and RNA interference can selectively knock out gene expression. Together, they give us an unprecedented ability to manipulate our own genetic code. By knocking out genes that code for certain metabolic proteins, scientists have been able to make mice that stay slim no matter how much junk food they eat. Lou Gehrig’s disease has been cured in mice, and it could only be a few years before we develop a therapy that can cure it for humans too.
Aubrey de Grey’s SENS (Strategies for Engineered Negligible Senescence) research program contains various prescriptions for the use of gene therapy. Within a couple decades or so, progress in anti-aging therapies will improve to the point where we are gaining more than an extra year of lifespan per year, reaching so-called “longevity escape velocity” eventually culminating in indefinite lifespans.
Like many transhumanist technologies, gene therapy is really exciting because it’s just beginning. No scientist has yet performed gene therapy on germline cells (sexual cells in the gonads) due to the ethical controversy of producing genetic changes which are heritable, but, as with many of these things, it’s only a matter of time. Regulations in any given country will only be capable of slowing the overall progress of the field by a few years at most.
The money will go where the research is permitted. In its mature form, gene therapy and genetic engineering will become extremely cheap and powerful, letting humans live comfortably in a wider range of environments and gain immunity to most, if not all diseases. Supercomputers of the future, with thousands or millions of times the crunch power of today’s best, will let us simulate the changes in extreme detail before we attempt them with actual human beings. This will make ill side effects quite unlikely for the typical case, much to the dismay of the authors of “genetic engineering turned daddy into a bloodthirsty zombie!” trash novels and films.
Space colonies will become necessary to house the many billions of individuals that will be born in the future as our population continues to expand at a lazy exponential. In his book, The Millennial Project, Marshall T. Savage estimates that the Asteroid Belt could hold 7,500 trillion people, if thoroughly reshaped into O’Neill colonies. At a typical population growth rate for developed countries at 1% per annum (doubling every 72 years), it would take us 1,440 years to fill that space. Siphoning light gases off Jupiter and Saturn and fusing them into heavier elements for construction of further colonies seems plausible in the longer term as well.
Why expand into space? For many, the answers are blatantly obvious, but the easiest is that the alternatives are limiting the human freedom to reproduce, or mass murder, both of which are morally unacceptable. Population growth is not inherently antithetical to a love of the environment — in fact, by expanding outwards into the cosmos in all directions, we’ll be able to seed every star system with every species of plant and animal imaginable. The genetic diversity of the embryonic home planet will seem tiny by comparison.
Space colonization is closely related to transhumanism through the mutual association of futurist philosophy, but also more directly because the embrace of transhumanism will be necessary to colonize space. Human beings aren’t designed to live in space. Our physiological issues with it are manifold, from deteriorating muscle mass to uncontrollable flatulence. On the surface of Venus, we would melt, on the surface of Mars, we’d freeze. The only reasonable solution is to upgrade our bodies. Not terraform the cosmos, but cosmosform ourselves.
Can you spot the cyborg in this picture? You’re looking right at him! It’s Michael Chorost, the man who was born almost deaf but now can hear, thanks to a cochlear implant. Most of the cyborgs in fiction fit certain stereotypes — bermensch wannabes, cyborg assassins, and supercops. But cyborgs already walk among us, and they look just like normal people.
This trend will continue in the future. Many cyborg upgrades which will become available in the 20s and 30s, such as hearing and vision enhancement, metabolic enhancement, artificial bones, muscles, and organs, and even brain-computer interfaces will be invisible to the casual observer, implanted beneath the skin. Cybernetic features on the surface, such as dermal enhancements or technological actuators like retractable wings, will be carefully camouflaged. No one will want to shock the rest of society by looking like the tin man in public.
The process of cyborgization has already been happening for centuries if not millennia, since the advent of clothing and piercings. For many generations, but especially in the last couple decades, our technological gadgets have been getting smaller, more functional, and more closely integrated with our natural activity.
Recently, Microsoft announced Microsoft Surface, a mouseless, keyboardless form of desktop computing which takes input from finger tracing and hand gestures. The sophistication of biotechnology and the availability of better materials and precision manufacturing will let us make systems so small and effective that even everyday people elect to implant them.
These cybernetic systems will greatly improve our everyday experience, from letting us hear a wider range of ambient sounds, to viewing millions of stars rather than just a few thousand, to making us more resistant to accidents. They will improve the overall economy by enabling us do more work in less time for better pay. In the long term, enhanced humans may get a bigger portion of the economic pie than un-augmented humans, but the pie itself will become so much larger than even the poorest humans of tomorrow will be better off than the wealthiest of today.
Here’s a good cyborg blog I found while doing research for this article, and the Power Jacket, a 4-pound jacket that enhances strength and is used by people recovering from paralysis. For more, see the cybernetics category of my del.ic.ious links, or my top ten list of cybernetic enhancements.
View the rest of the top ten HERE
Tags:
"Destroying the New World Order"
THANK YOU FOR SUPPORTING THE SITE!
© 2024 Created by truth. Powered by