A new way to make lighter, stronger steel -- in a flash

COLUMBUS, Ohio – A Detroit entrepreneur surprised university engineers here recently, when he invented a heat-treatment that makes steel 7 percent stronger than any steel on record – in less than 10 seconds.

In fact, the steel, now trademarked as Flash Bainite, has tested stronger and more shock-absorbing than the most common titanium alloys used by industry.

Now the entrepreneur is working with researchers at Ohio State University to better understand the science behind the new treatment, called flash processing.

What they've discovered may hold the key to making cars and military vehicles lighter, stronger, and more fuel-efficient.

In the current issue of the journal Materials Science and Technology, the inventor and his Ohio State partners describe how rapidly heating and cooling steel sheets changes the microstructure inside the alloy to make it stronger and less brittle.

The basic process of heat-treating steel has changed little in the modern age, and engineer Suresh Babu is one of few researchers worldwide who still study how to tune the properties of steel in detail. He's an associate professor of materials science and engineering at Ohio State, and Director of the National Science Foundation (NSF) Center for Integrative Materials Joining for Energy Applications, headquartered at the university.

"Steel is what we would call a 'mature technology.' We'd like to think we know most everything about it," he said. "If someone invented a way to strengthen the strongest steels even a few percent, that would be a big deal. But 7 percent? That's huge."

Yet, when inventor Gary Cola initially approached him, Babu didn't know what to think.

"The process that Gary described – it shouldn't have worked," he said. "I didn't believe him. So he took my students and me to Detroit."

Cola showed them his proprietary lab setup at SFP Works, LLC., where rollers carried steel sheets through flames as hot as 1100 degrees Celsius and then into a cooling liquid bath.

Though the typical temperature and length of time for hardening varies by industry, most steels are heat-treated at around 900 degrees Celsius for a few hours. Others are heated at similar temperatures for days.

Cola's entire process took less than 10 seconds.

He claimed that the resulting steel was 7 percent stronger than martensitic advanced high-strength steel. [Martensitic steel is so named because the internal microstructure is entirely composed of a crystal form called martensite.] Cola further claimed that his steel could be drawn – that is, thinned and lengthened – 30 percent more than martensitic steels without losing its enhanced strength.

If that were true, then Cola's steel could enable carmakers to build frames that are up to 30 percent thinner and lighter without compromising safety. Or, it could reinforce an armored vehicle without weighing it down.

"We asked for a few samples to test, and it turned out that everything he said was true," said Ohio State graduate student Tapasvi Lolla. "Then it was up to us to understand what was happening."

Cola is a self-taught metallurgist, and he wanted help from Babu and his team to reveal the physics behind the process – to understand it in detail so that he could find ways to adapt it and even improve it.

He partnered with Ohio State to provide research support for Brian Hanhold, who was an undergraduate student at the time, and Lolla, who subsequently earned his master's degree working out the answer.

Using an electron microscope, they discovered that Cola's process did indeed form martensite microstructure inside the steel. But they also saw another form called bainite microstructure, scattered with carbon-rich compounds called carbides.

In traditional, slow heat treatments, steel's initial microstructure always dissolves into a homogeneous phase called austenite at peak temperature, Babu explained. But as the steel cools rapidly from this high temperature, all of the austenite normally transforms into martensite.

"We think that, because this new process is so fast with rapid heating and cooling, the carbides don't get a chance to dissolve completely within austenite at high temperature, so they remain in the steel and make this unique microstructure containing bainite, martensite and carbides," Babu said.

Lolla pointed out that this unique microstructure boosts ductility -- meaning that the steel can crumple a great deal before breaking – making it a potential impact-absorber for automotive applications.

Babu, Lolla, Ohio State research scientist Boian Alexandrov, and Cola co-authored the paper with Badri Narayanan, a doctoral student in materials science and engineering.

Now Hanhold is working to carry over his lessons into welding engineering, where he hopes to solve the problem of heat-induced weakening during welding. High-strength steel often weakens just outside the weld joint, where the alloy has been heated and cooled. Hanhold suspects that bringing the speed of Cola's method to welding might minimize the damage to adjacent areas and reduce the weakening.

If he succeeds, his discovery will benefit industrial partners of the NSF Center for Integrative Materials Joining Science for Energy Applications, which formed earlier this year. Ohio State's academic partners on the center include Lehigh University, the University of Wisconsin-Madison, and the Colorado School of Mines.

###

Contact: Suresh Babu, (614) 247-0001; Babu.13@osu.edu [From June 14-30, 2011, Babu is best reached by email, or through Pam Frost Gorder.]

Written by Pam Frost Gorder, (614) 292-9475; Gorder.1@osu.edu

 

http://www.eurekalert.org/pub_releases/2011-06/osu-anw060911.php

Views: 63

Comment

You need to be a member of 12160 Social Network to add comments!

Join 12160 Social Network

"Destroying the New World Order"

TOP CONTENT THIS WEEK

THANK YOU FOR SUPPORTING THE SITE!

mobile page

12160.info/m

12160 Administrators

 

Latest Activity

Sandy posted a photo
5 hours ago
Doc Vega posted blog posts
15 hours ago
tjdavis posted a video

Devo - Fresh

"Fresh" is from Devo's 2010 album, Something For Everybody. Video producer – Brian Carr/David VotteroVideo director – Gerald Casale & Davy Forcehttps://www.C...
21 hours ago
Doc Vega commented on tjdavis's blog post Drones Used In Gaza Surveilling US Cities
"Remember that song by Alan Parsons "Eye in the Sky"?"
yesterday
Snakedaddy favorited tjdavis's video
yesterday
Doc Vega posted a blog post
Friday
tjdavis posted blog posts
Friday
Sandy commented on tjdavis's blog post Drones Used In Gaza Surveilling US Cities
Thursday
Less Prone favorited cheeki kea's photo
Wednesday
cheeki kea commented on cheeki kea's photo
Thumbnail

ancient lost worlds ~ DNA

"The area of Ket and Selkup  peoples.There have been groups of people that have long…"
Wednesday
cheeki kea posted a photo
Wednesday
cheeki kea commented on Less Prone's video
Thumbnail

FEYNMAN: THE QUEST FOR TANNU TUVA (1988)

"Wow. And as strange coincidence this could be the very place of the great migration ( to America,…"
Wednesday
cheeki kea favorited Less Prone's video
Wednesday
tjdavis favorited Sandy's discussion Sick sci-fi sex fantasy written by Epstein's first benefactor people say inspired his twisted island... before author's SON ended up arresting him
Wednesday
tjdavis posted a blog post
Wednesday
tjdavis posted photos
Tuesday
Less Prone posted a video

FEYNMAN: THE QUEST FOR TANNU TUVA (1988)

100th birthday present! Richard Feynman (1918-88), physicist, and his friend Ralph Leighton became fascinated by the remote and mysterious Asian country of T...
Tuesday
tjdavis favorited cheeki kea's video
Nov 3
tjdavis posted blog posts
Nov 3
cheeki kea commented on Doc Vega's blog post Grooming the New Generation of Assassins
"That's right. Many countries head down that road into a terrorising future of Self ID-ers. (…"
Oct 31

© 2025   Created by truth.   Powered by

Badges  |  Report an Issue  |  Terms of Service

content and site copyright 12160.info 2007-2019 - all rights reserved. unless otherwise noted