Acoustic 'cloaking device' shields objects from sound


Graphs showing acoustic 'cloaking' Reflections of sound off a surface (top), off an object on it (middle) and off a cloaked object (bottom)

Scientists have shown off a "cloaking device" that makes objects invisible - to sound waves.

Such acoustic cloaking was proposed theoretically in 2008 but has only this year been put into practice.

Described in Physical Review Letters, the approach borrows many ideas from attempts to "cloak" objects from light.

It uses simple plastic sheets with arrays of holes, and could be put to use in making ships invisible to sonar or in acoustic design of concert halls.

Much research has been undertaken toward creating Harry Potter-style "invisibility cloaks" since the feasibility of the idea was first put forward in 2006.

Those approaches are mostly based on so-called metamaterials, man-made materials with properties that do not occur in nature. The metamaterials are designed such that they force light waves to travel around an object; to an observer, it is as if the object were not there.

But researchers quickly found out that the mathematics behind bending these light waves, called transformation optics, could also be applied to sound waves.

"Fundamentally, in terms of hiding objects, it's the same - how anything is sensed is with some kind of wave and you either hear or see the effect of it," said Steven Cummer of Duke University. "But when it comes to building the materials, things are very different between acoustics and electromagnetics.

"The thing you need to engineer into the materials is very different behaviour in different directions that the wave travels through it," he told BBC News.

In 2008, Dr Cummer first described the theory of acoustic cloaking in an article in Physical Review Letters, and earlier this year a group from the University of Illinois Urbana-Champaign demonstrated the first practical use of the theory in an article in the same journal.

That work showed acoustic invisibility in a shallow layer of water, at ultrasound frequencies above those we can hear.

Now, Dr Cummer and his colleagues have shown off an acoustic cloaking technique that works in air, for audible frequencies between one and four kilohertz - corresponding to two octaves on the higher half of a piano.

Acoustic cloaking device The cloaking shell is made of easily-manufactured sheets of plastic with holes through them

It works by using stacked sheets of plastic with regular arrays of holes through them. The exact size and placement of the holes on each sheet, and the spacing between the sheets, has a predictable effect on incoming sound waves.

When placed on a flat surface, the stack redirects the waves such that reflected waves are exactly as they would be if the stack were not there at all.

That means that an object under the stack - in the team's experiments, a block of wood about 10cm long - would not "hear" the sound, and any attempts to locate the object using sound waves would not find it.

"How the sound reflects off this reflecting surface with this composite object on it - which is pretty big and has a cloaking shell on it - really reflects... just like a flat surface does," Dr Cummer said.

Hole poking

Ortwin Hess, a director of Imperial College London's Centre for Plasmonics and Metamaterials, called the work "a really remarkable experimental demonstration".

"It shows very nicely that although acoustic and electromagnetic waves are very different in nature, the powers of transformation optics and transformation acoustics are [similar] - I'm quite pleased that there's activity on both ends."

Professor Hess pointed out that the demonstration was for very directed sound waves, and only in two dimensions, but the most notable aspect of the approach was its simplicity.

"It's almost like someone could take a pencil and poke holes in a particular way in the plastic," he told BBC News.

"It's a bit more challenging for three dimensions. I don't see any reason why it shouldn't be possible but it won't be just an afternoon's work."

The work shows that an object can be hidden from sonar, and protected from incoming sound, but the same principles could be applied in the other direction - that is, containing or directing the sound within a space, for instance in soundproofing a studio or fine-tuning the acoustics of a concert hall.

http://www.bbc.co.uk/news/science-environment-13905573

Views: 43

Comment

You need to be a member of 12160 Social Network to add comments!

Join 12160 Social Network

Comment by Nikki on June 25, 2011 at 9:12pm
Did they get this idea from Harry Potter?

"Destroying the New World Order"

TOP CONTENT THIS WEEK

THANK YOU FOR SUPPORTING THE SITE!

mobile page

12160.info/m

12160 Administrators

 

Latest Activity

tjdavis posted blog posts
11 hours ago
tjdavis commented on tjdavis's video
13 hours ago
tjdavis posted videos
14 hours ago
tjdavis posted photos
14 hours ago
Doc Vega posted blog posts
19 hours ago
Doc Vega commented on Doc Vega's blog post What Will happen When Robot Brides Replace Human Marriage?
"Less Prone thanks for your support Buddy! "
yesterday
Less Prone favorited tjdavis's video
Thursday
Less Prone posted a photo

Social Engineering 101

That's how it goes.
Thursday
Doc Vega posted a blog post

A Prelude to WW III ? It Seems There We Are Trailblazing Idiocy into More Blood and Destruction!

They're rolling out the 25th Amendment trying to stop Joe Biden from insanely thrusting the US in a…See More
Thursday
Less Prone posted a video

Chris Langan - The Interview THEY Didn't Want You To See - CTMU [Full Version; Timestamps]

DW Description: Chris Langan is known to have the highest IQ in the world, somewhere between 195 and 210. To give you an idea of what this means, the average...
Wednesday
Doc Vega posted a blog post

RFK Jr. Appoinment Rocks the World of the Federal Health Agncies and The Big Pharma Profits!

The Appointment by Trump as Secretary of HHS has sent shockwaves through the federal government…See More
Tuesday
tjdavis posted a video

Somewhere in California.

Tom Waites and Iggy Pop meet in a midnight diner in Jim Jarmusch's 2003 film Coffee and Cigarettes.
Tuesday
cheeki kea commented on cheeki kea's photo
Thumbnail

1 possible 1

"It's possible, but less likely. said the cat."
Nov 18
cheeki kea posted a photo
Nov 18
tjdavis posted a blog post
Nov 18
Tori Kovach commented on cheeki kea's photo
Thumbnail

You are wrong, all of you.

"BECAUSE TARIFFS WILL PUT MONEY IN YOUR POCKETS!"
Nov 17
Tori Kovach posted photos
Nov 17
Doc Vega posted a blog post

Whatever Happened?

Whatever Happened?  The unsung heroes will go about their dayRegardless of the welcome they've…See More
Nov 17
Doc Vega commented on Doc Vega's blog post A Requiem for the Mass Corruption of the Federal Government
"cheeki kea Nice work! Thank you! "
Nov 17
cheeki kea commented on Doc Vega's blog post A Requiem for the Mass Corruption of the Federal Government
"Chin up folks, once the low hanging fruit gets picked off a clearer view will reveal the higher…"
Nov 16

© 2024   Created by truth.   Powered by

Badges  |  Report an Issue  |  Terms of Service

content and site copyright 12160.info 2007-2019 - all rights reserved. unless otherwise noted