So It Begins: Darpa Sets Out to Make Computers That Can Teach Themselves

So It Begins: Darpa Sets Out to Make Computers That Can Teach Themselves

By Robert Beckhusen

http://www.wired.com/dangerroom/2013/03/darpa-machine-learning-2/

03.21.13
4:59 PM

 

Machine learning is how a computer (yellow) carries out a new task (red). The program adds its prior training (green), makes predictions, and completes the task. The result: the machine gets smarter. Illustration: Darpa

The Pentagon’s blue-sky research agency is readying a nearly four-year project to boost artificial intelligence systems by building machines that can teach themselves — while making it easier for ordinary schlubs like us to build them, too.

When Darpa talks about artificial intelligence, it’s not talking about modeling computers after the human brain. That path fell out of favor among computer scientists years ago as a means of creating artificial intelligence; we’d have to understand our own brains first before building a working artificial version of one. But the agency thinks we can build machines that learn and evolve, using algorithms — “probabilistic programming” — to parse through vast amounts of data and select the best of it. After that, the machine learns to repeat the process and do it better.

But building such machines remains really, really hard: The agency calls it “Herculean.” There are scarce development tools, which means “even a team of specially-trained machine learning experts makes only painfully slow progress.” So on April 10, Darpa is inviting scientists to a Virginia conference to brainstorm. What will follow are 46 months of development, along with annual “Summer Schools,” bringing in the scientists together with “potential customers” from the private sector and the government.

Called “Probabilistic Programming for Advanced Machine Learning,” or PPAML, scientists will be asked to figure out how to “enable new applications that are impossible to conceive of using today’s technology,” while making experts in the field “radically more effective,” according to a recent agency announcement. At the same time, Darpa wants to make the machines simpler and easier for non-experts to build machine-learning applications too.

 

It’s no surprise the mad scientists are interested. Machine learning can be used to make better systems for intelligence, surveillance and reconnaissance, a core military necessity. The technology can be used to make better speech-recognition applications and self-driving cars. It keeps pace with the ever-enlarging war against internet spam filling our search engines and e-mail inboxes.

“Our goal is that future machine learning projects won’t require people to know everything about both the domain of interest and machine learning to build useful machine learning applications,” Darpa program manager Kathleen Fisher in an announcement. “Through new probabilistic programming languages specifically tailored to probabilistic inference, we hope to decisively reduce the current barriers to machine learning and foster a boom in innovation, productivity and effectiveness.”

Once that gets going, the scientists will first have to improve the “front end” and “back end” of the machines. Respectively, those are the parts of a computer learning system that developers see, and the parts responsible for figuring out a predictive model that helps the computer become smarter.

For developers at the front end, the machines can’t be too complicated, and the code should “balance the expressive power of the language with the corresponding difficulty of producing an efficient solver.” To make developing the machines more accessible to non-experts, debuggers and testing tools need to be understandable enough as well, so testers can figure out when there’s a bug or if the computer is spitting out inaccurate results.

The other question involves how to make computer-learning machines more predictable. Darpa believes it’s likely that the algorithms used in the systems will have to become much more sophisticated to find “the most appropriate solver or set of solvers given a particular model, query or set of prior data.” That could be “by incorporating data from the compiler optimization community.” Finally, the solvers need to work with a large number of different computers and do so efficiently: “including multi-core machines, GPUs, cloud infrastructures, and potentially custom hardware.”

If it works, then it means more advanced intelligence-gathering systems, less spam, and Minority Report-style self-driving cars of the future. Sounds like a pretty good deal. But to produce a machine-learning system that’s “effective,” the agency states: “Improvements on the order of two to four magnitude over the state of the art are likely necessary.” No pressure.

Robert Beckhusen

Robert Beckhusen is a writer based in Austin, Texas, where he covers Latin America for War Is Boring.

Read more by Robert Beckhusen

Follow @rbeckhusen on Twitter.

Views: 382

"Destroying the New World Order"

TOP CONTENT THIS WEEK

THANK YOU FOR SUPPORTING THE SITE!

mobile page

12160.info/m

12160 Administrators

 

Latest Activity

Doc Vega posted blog posts
22 minutes ago
Doc Vega commented on tjdavis's video
Thumbnail

The Hunt - Official Trailer [HD]

"A former ANTIFA member was interviewed here recently and this would not be far from actual reality…"
Monday
Doc Vega posted blog posts
Monday
tjdavis posted videos
Monday
tjdavis posted a blog post
Monday
tjdavis posted a photo
Monday
Doc Vega posted a blog post

Legacy of Supposedly Inferior Aircraft Outmatching Their Enemies

 We think of the Korean War aerial combat as the classic dogfights between the American F-86 Sabre…See More
Saturday
Doc Vega commented on tjdavis's blog post Cities,States Without Limits
"This is just another form of a feudal globalism dictated by corporate technocrats bragging about…"
Saturday
Doc Vega favorited tjdavis's blog post Cities,States Without Limits
Saturday
Doc Vega posted a blog post

What is Area 2 and What Goes on There?

 We have all heard of Area 51 and S-4, along with such terms as Water Town, Papoose Lake,…See More
Friday
Doc Vega posted a blog post

STRANGE THINGS HAPPENING IN YELLOWSTONE

It’s not the fact that Yellowstone National Park sits atop a super volcano that hasn’t erupted in…See More
Nov 20
tjdavis posted a video

Austrian police raid house of man who leaked Israeli ambassador video making genocidal comments

In a new ITV documentary, Breaking Ranks: Inside Israel’s War, former Israeli soldiers describe how Gaza civilians were killed, often without warning, in an ...
Nov 20
Burbia posted a video

WARHAMMER 40,000 | 1980's GRIMDARK MOVIE

WARHAMMER 40,000 | 1980's GRIMDARK MOVIEThis is a Concept Movie Trailer made with the help of AI. This video is created purely for fun and out of curiosity a...
Nov 19
tjdavis favorited Sandy's discussion Sick sci-fi sex fantasy written by Epstein's first benefactor people say inspired his twisted island... before author's SON ended up arresting him
Nov 19
tjdavis favorited Sandy's discussion Sick sci-fi sex fantasy written by Epstein's first benefactor people say inspired his twisted island... before author's SON ended up arresting him
Nov 19
tjdavis commented on tjdavis's blog post THE ORIGINS OF THE WORLD ASSOCIATION OF SOCIAL PSYCHIATRY IN LONDON, UK IN 1964
"Tavistock Timing"
Nov 19
tjdavis posted a blog post
Nov 19
Doc Vega posted a blog post

The Ringside View

Down in the streets where the animals meetWhere tear gas flies and people get beatWhere…See More
Nov 19
tjdavis posted videos
Nov 18
tjdavis posted blog posts
Nov 17

© 2025   Created by truth.   Powered by

Badges  |  Report an Issue  |  Terms of Service

content and site copyright 12160.info 2007-2019 - all rights reserved. unless otherwise noted